Python Inheritance

June 6, 2024

0.1 Python Inheritance
Dr.Labeed Al-Saad

Inheritance allows us to define a class that inherits all the methods and properties from another
class.

**Parent class is the class being inherited from, also called base class.

**Child class is the class that inherits from another class, also called derived class.

0.2 Create a Parent Class
Any class can be a parent class, so the syntax is the same as creating any other class:
Example:

Create a class named Person, with firstname and lastname properties, and a printname method:

[1]: class Person:
def __init__(selfl, fname, lname, age):
selfl.firstname = fname
selfl.lastname = lname
selfl.age = age

def printname_age(selfl):
print(selfl.firstname, selfl.lastname, selfl.age,"year")

#Use the Person class to create an object, and then execute the printname_age,
<method:

x = Person("John", "Doe", 40)

Xx.printname_age ()

John Doe 40 year

0.3 Create a Child Class

To create a class that inherits the functionality from another class, send the parent class as a
parameter when creating the child class:

Example:

[]:

[2]:

[1:

Create a class named Student, which will inherit the properties and methods from the Person class:

class Student (Person):
pass

**Note: Use the pass keyword when you do not want to add any other properties or methods to
the class.

Now the Student class has the same properties and methods as the Person class.
Example:

Use the Student class to create an object, and then execute the printname method:

class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
pass

x = Student("Mike", "Olsen")
X.printname ()

Mike Olsen

0.4 Add the init() Function
So far we have created a child class that inherits the properties and methods from its parent.
We want to add the init() function to the child class (instead of the pass keyword).

**Note: The init() function is called automatically every time the class is being used to create a
new object.

Example:

Add the init() function to the Student class:

class Student (Person):
def __init__(self, fname, lname):
#add properties etc.

When you add the init() function, the child class will no longer inherit the parent’s init() function.
**Note: The child’s init() function overrides the inheritance of the parent’s init() function.
To keep the inheritance of the parent’s init() function, add a call to the parent’s init() function:

Example:

[3]: class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person) :
def __init__(self, fname, lname):
Person._ _init__(self, fname, lname)

x = Student("Mike", "Olsen")
X.printname ()

Mike Olsen
**Also we can added new properities inherited class properities
Example:

we’ll add age properity to the child calss, which is not found in the inhrited propperitis

[4]: class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
def __init__(self, fname, lname, age):
Person.__init__(self, fname, lname)
self.age = age #here we added new properity

def printage(self): #this function to print the new properity
print(self.age, "year")

x = Student("Mike", "Olsen", 40)
x.printname ()
x.printage() #call for new properity print function

Mike Olsen
40 year

Other example to add new properity:

[6]: | class Person:
def __init__(self, fname, lname):

self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person) :
def __init__(self, fname, lname):
super() .__init__(fname, lname)
self.graduationyear = 2019 #new properity

x = Student("Mike", "Olsen")
print(x.graduationyear) #printing of new properity

2019

0.5 Use the super() Function

Python also has a super() function that will make the child class inherit all the methods and
properties from its parent:

By using the super() function, you do not have to use the name of the parent element, it will
automatically inherit the methods and properties from its parent.

Example:

[6]: class Person:
def __init_ _(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
def __init__(self, fname, lname):
super() .__init__(fname, lname)

x = Student("Mike", "Olsen")
X.printname ()

Mike Olsen

0.6 Add Methods
Example:

Add a method called welcome to the Student class:

[7]: class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person) :
def __init__(self, fname, lname, year):
super() .__init__(fname, lname)
self.graduationyear = year

def welcome(self):
print("Welcome", self.firstname, self.lastname, "to the class of", self.
~graduationyear)

x = Student("Mike", "Olsen", 2019)
x.welcome ()

Welcome Mike Olsen to the class of 2019

[1: #xIf you add a method in the child class with the same name as a function in
—~the parent class,
the inheritance of the parent method will be overridden.

	Python Inheritance
	Create a Parent Class
	Create a Child Class
	Add the init() Function
	Use the super() Function
	Add Methods

